A Generalization of the Non-triviality Theorem of Serre

نویسنده

  • STEPHAN KLAUS
چکیده

We generalize the classical theorem of Serre on the non-triviality of infinitely many homotopy groups of 1-connected finite CW-complexes to CW-complexes where the cohomology groups either grow too fast or do not grow faster than a certain rate given by connectivity. For example, this result can be applied to iterated suspensions of finite Postnikov systems and certain spaces with finitely generated cohomology ring. In particular, we obtain an independent, short proof of a theorem of R. Levi on the non-triviality of kinvariants associated to finite perfect groups. Another application concerns spaces where the cohomology grows like a polynomial algebra on generators in dimension n, 2n, 3n, . . . for a fixed number n. We also consider spectra where we prove a non-triviality result in the case of fast growing cohomology groups. A classical theorem of J.P. Serre (for p = 2, [S]) and Y. Umeda (for odd p, [U]) states that a 1-connected finite CW-complex X with non-trivial cohomology mod p has infinitely many non-trivial homotopy groups mod p. In [MN], C.A. McGibbon and J.A. Neisendorfer proved a stronger result (the existence of p-torsion elements in infinitely many dimensions for finite dimensional spaces) using H. Miller’s theorem on the Sullivan conjecture. Using the same methods from analytical number theory as in the original proof of Serre, we show a straightforward generalization of the Serre non-triviality theorem to certain infinite CW-complexes, which seems not to be in the literature. The point is that the cohomology of a finite Postnikov section has a certain growth rate depending of the highest homotopy group. Thus, spaces where cohomology grows faster or slower cannot have a finite Postnikov system. We need some notation: Definition 1. Let X be a connected CW-complex and p a prime. We call X of finite type if Hk(X ;Z) is finitely generated for all k > 0. Then we can define the mod p Poincaré series as the formal power series with integer coefficients h(X, t) := ∑

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

Extension functors of local cohomology modules

Let $R$ be a commutative Noetherian ring with non-zero identity, $fa$ an ideal of $R$, and $X$ an $R$--module. Here, for fixed integers $s, t$ and a finite $fa$--torsion $R$--module $N$, we first study the membership of $Ext^{s+t}_{R}(N, X)$ and $Ext^{s}_{R}(N, H^{t}_{fa}(X))$ in the Serre subcategories of the category of $R$--modules. Then, we present some conditions which ensure the exi...

متن کامل

Generalization of Titchmarsh's Theorem for the Dunkl Transform

Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE DUNKL TRANSFORM IN THE SPACE $L^P(R)$

In this paper‎, ‎using a generalized Dunkl translation operator‎, ‎we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$‎, ‎where $alpha>-frac{1}{2}$.  

متن کامل

A GENERALIZATION OF A JACOBSON’S COMMUTATIVITY THEOREM

In this paper we study the structure and the commutativity of a ring R, in which for each x,y ? R, there exist two integers depending on x,y such that [x,y]k equals x n or y n.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002